Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 651
Filtrar
1.
Nutrients ; 16(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732590

RESUMEN

Nucleotides (NTs), important biomolecules involved in numerous cellular processes, have been proposed as potential candidates for anti-aging interventions. However, whether nucleotides can act as an anti-aging supplement in older adults remains unclear. TALENTs is a randomized, double-blinded, placebo-controlled trial that evaluates the efficacy and safety of NTs as an anti-aging supplement in older adults by exploring the effects of NTs on multiple dimensions of aging in a rigorous scientific setting. Eligible community-dwelling adults aged 60-70 years were randomly assigned equally to two groups: nucleotides intervention group and placebo control group. Comprehensive geriatric health assessments were performed at baseline, 2-months, and 4-months of the intervention. Biological specimens were collected and stored for age-related biomarker testing and multi-omics sequencing. The primary outcome was the change from baseline to 4 months on leukocyte telomere length and DNA methylation age. The secondary aims were the changes in possible mechanisms underlying aging processes (immunity, inflammatory profile, oxidative stress, gene stability, endocrine, metabolism, and cardiovascular function). Other outcomes were changes in physical function, body composition and geriatric health assessment (including sleep quality, cognitive function, fatigue, frailty, and psychology). In the RCT, 301 participants were assessed for eligibility and 122 were enrolled. Participants averaged 65.65 years of age, and were predominately female (67.21%). All baseline characteristics were well-balanced between groups, as expected due to randomization. The majority of participants were pre-frailty and had at least one chronic condition. The mean scores for physical activity, psychological, fatigue and quality of life were within the normal range. However, nearly half of the participants still had room for improvement in cognitive level and sleep quality. This TALENTs trial will represent one of the most comprehensive experimental clinical trials in which supplements are administered to elderly participants. The findings of this study will contribute to our understanding of the anti-aging effects of NTs and provide insights into their potential applications in geriatric healthcare.


Asunto(s)
Envejecimiento , Longevidad , Nucleótidos , Humanos , Anciano , Femenino , Masculino , Envejecimiento/fisiología , Persona de Mediana Edad , Método Doble Ciego , Suplementos Dietéticos , Evaluación Geriátrica/métodos , Metilación de ADN/efectos de los fármacos , Telómero/efectos de los fármacos , Leucocitos
2.
Int J Nanomedicine ; 19: 3805-3825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708177

RESUMEN

Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Telomerasa , Telómero , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Telómero/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Telomerasa/antagonistas & inhibidores , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Inmunoterapia/métodos , Células Madre Neoplásicas/efectos de los fármacos
3.
Environ Res ; 249: 118323, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336161

RESUMEN

Telomere length (TL) is a biomarker for cellular senescence and TL erosion is predictive of the risk for age-related diseases. Despite being genetically determined at birth, TL may be susceptible to modifications through epigenetic mechanisms. Pollutant agents are considered one of the major threats to both human and planetary health. Their ability to cross the placental barrier and induce oxidative stress in fetal cells is particularly concerning and it may be associated with early TL erosion. In consideration of the timely relevance of this topic, we conducted a literature review on the impact of prenatal exposure to pollutant agents on newborn TL. The search yielded a total of 1099 records, of which only 32 met the inclusion criteria for the review. These criteria included the participation of human subjects, a longitudinal design or collection of longitudinal data, reporting of original TL data, and a focus on exposure to pollutant agents. The majority of the studies reported a significant inverse association between prenatal exposure to pollutant agents and TL. Furthermore, the second trimester of pregnancy emerged as a special sensitive period for the occurrence of pollutant agent-driven TL modifications. Sex differences were inconsistently reported across studies. This review contributes to highlighting biochemical pathways for the threats of environmental pollution to human health. Future research is warranted to further highlight potential buffering mechanisms.


Asunto(s)
Contaminantes Ambientales , Humanos , Embarazo , Femenino , Contaminantes Ambientales/toxicidad , Telómero/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Recién Nacido , Exposición Materna/efectos adversos , Contaminación Ambiental/efectos adversos
4.
Nutrients ; 14(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014852

RESUMEN

Short telomeres have been associated with ageing and cardiovascular disease. The influence on leukocyte telomere length (LTL) of long-term intervention with combined selenium and coenzyme Q10 is unknown. Our aim was to determine whether 42 months of selenium and coenzyme Q10 supplementation prevented telomere attrition and further cardiovascular mortality. The investigation is an explorative sub-study of a double-blind, placebo-controlled, randomized trial. Swedish citizens low in selenium (n = 118), aged 70−80 years, were included. Intervention time was 4 years, with 10 years' follow-up time. LTL was relatively quantified with PCR at baseline and after 42 months. At baseline, LTL (SD) was 0.954 (0.260) in the active treatment group and 1.018 (0.317) in the placebo group (p = 0.23). At 42 months, less shortening of LTL was observed after active treatment compared with placebo (+0.019 vs. −0.129, respectively, p = 0.02), with a significant difference in change basing the analysis on individual changes in LTL (p < 0.001). Subjects suffering future death presented with significantly shorter LTL at 42 months than survivors [0.791 (0.190) vs. 0.941 (0.279), p = 0.01], with a significant difference in change of LTL according to cardiovascular mortality and survival (p = 0.03). To conclude, preservation of LTL after selenium and coenzyme Q10 supplementation associated with reduced cardiovascular mortality.


Asunto(s)
Enfermedades Cardiovasculares , Selenio , Telómero , Ubiquinona , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/prevención & control , Suplementos Dietéticos , Humanos , Leucocitos , Estudios Prospectivos , Selenio/farmacología , Selenio/uso terapéutico , Telómero/efectos de los fármacos , Telómero/fisiología , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
5.
PLoS One ; 17(2): e0264337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35202418

RESUMEN

Vitamin D deficiency is common among postmenopausal women. Telomere length can be a potential protective mechanism for age-related diseases. The objective of our study is to examine the association of vitamin D supplementation on leukocyte telomere length (LTL) in healthy postmenopausal women with vitamin D deficiency. The study was designed as a placebo-controlled study to investigate the short-term effects of vitamin D supplementation and seasonal changes on vitamin D related parameters, including 25(OH)D, 1,25(OH)2D parathormone (PTH), Vitamin D binding protein (VDBP), vitamin D receptor (VDR), and telomere length in a cohort of postmenopausal women (n = 102). The group was divided as supplementation (n = 52) and placebo groups (n = 50). All parameters were measured before and after treatment. Serum VDBP levels were measured by ELISA method and VDR, GC (VDBP) gene expressions and relative telomere lengths were measured in peripheral blood mononuclear cells (PBMC) using a quantitative real-time PCR method. The results demonstrate that baseline levels were similar between the groups. After vitamin D supplementation 25(OH)D, 1,25(OH)2D, PTH and VDBP levels were changed significantly compared to the placebo group. At the end of the study period, LTL levels were significantly increased in both groups and this change was more prominent in placebo group. The change in GC expression was significant between treatment and placebo groups but VDR expression remained unchanged. Even though the study was designed to solely assess the effects of vitamin D supplementation, LTL was significantly increased in the whole study group in summer months suggesting that LTL levels are affected by sun exposure and seasonal changes rather than supplementation. The study displayed the short-term effect of Vitamin D supplementation on vitamin D, PTH levels, LTL and vitamin D associated gene expressions. The relation between Vitamin D and LTL is not linear and could be confounded by several factors such as the population differences, regional and seasonal changes in sun exposure.


Asunto(s)
Leucocitos Mononucleares/efectos de los fármacos , Homeostasis del Telómero/efectos de los fármacos , Telómero/efectos de los fármacos , Deficiencia de Vitamina D/tratamiento farmacológico , Vitamina D/farmacología , Anciano , Estudios de Cohortes , Femenino , Humanos , Leucocitos Mononucleares/ultraestructura , Persona de Mediana Edad , Posmenopausia , Receptores de Calcitriol/sangre , Transcriptoma , Vitamina D/administración & dosificación , Vitamina D/sangre , Deficiencia de Vitamina D/patología
6.
Mol Neurobiol ; 59(1): 590-602, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741234

RESUMEN

DNA oxidative damage can cause telomere attrition or dysfunction that triggers cell senescence and apoptosis. The hypothesis of this study is that folic acid decreases apoptosis in neural stem cells (NSCs) by preventing oxidative stress-induced telomere attrition. Primary cultures of NSCs were incubated for 9 days with various concentrations of folic acid (0-40 µM) and then incubated for 24 h with a combination of folic acid and an oxidant (100-µM hydrogen peroxide, H2O2), antioxidant (10-mM N-acetyl-L-cysteine, NAC), or vehicle. Intracellular folate concentration, apoptosis rate, cell proliferative capacity, telomere length, telomeric DNA oxidative damage, telomerase activity, intracellular reactive oxygen species (ROS) levels, cellular oxidative damage, and intracellular antioxidant enzyme activities were determined. The results showed that folic acid deficiency in NSCs decreased intracellular folate concentration, cell proliferation, telomere length, and telomerase activity but increased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. In contrast, folic acid supplementation dose-dependently increased intracellular folate concentration, cell proliferative capacity, telomere length, and telomerase activity but decreased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. Exposure to H2O2 aggravated telomere attrition and oxidative damage, whereas NAC alleviated the latter. High doses of folic acid prevented telomere attrition and telomeric DNA oxidative damage by H2O2. In conclusion, inhibition of telomeric DNA oxidative damage and telomere attrition in NSCs may be potential mechanisms of inhibiting NSC apoptosis by folic acid.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Ácido Fólico/farmacología , Células-Madre Neurales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Telómero/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Peróxido de Hidrógeno/farmacología , Células-Madre Neurales/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Telómero/metabolismo
8.
Mol Biol Rep ; 48(12): 7767-7773, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34669125

RESUMEN

PURPOSE: Millions of pregnant, HIV-infected women take reverse transcriptase inhibitors, such as zidovudine (azidothymidine or AZT), during pregnancy. Reverse transcription plays important roles in early development, including regulation of telomere length (TL) and activity of transposable elements (TE). So we evaluated the effects of AZT on embryo development, TL, and copy number of an active TE, Long Interspersed Nuclear Element 1 (LINE-1), during early development in a murine model. DESIGN: Experimental study. METHODS: In vivo fertilized mouse zygotes from B6C3F1/B6D2F1 mice were cultured for 48 h in KSOM with no AZT (n = 45), AZT 1 µM (n = 46) or AZT 10 µM (n = 48). TL was measured by single-cell quantitative PCR (SC-pqPCR) and LINE-1 copy number by qPCR. The percentage of morulas at 48 h, TL and LINE-1 copy number were compared among groups. RESULTS: Exposure to AZT 1 µM or 10 µM significantly impairs early embryo development. TL elongates from oocyte to control embryos. TL in AZT 1 µM embryos is shorter than in control embryos. LINE-1 copy number is significantly lower in oocytes than control embryos. AZT 1 µM increases LINE-1 copy number compared to oocytes controls, and AZT 10 µM embryos. CONCLUSION: AZT at concentrations approaching those used to prevent perinatal HIV transmission compromises mouse embryo development, prevents telomere elongation and increases LINE-1 copy number after 48 h treatment. The impact of these effects on the trajectory of aging of children exposed to AZT early during development deserves further investigation.


Asunto(s)
Proteínas de Unión al ARN/genética , Telómero/metabolismo , Zidovudina/farmacología , Animales , Fármacos Anti-VIH/farmacología , Blastocisto/efectos de los fármacos , Elementos Transponibles de ADN/genética , Desarrollo Embrionario/efectos de los fármacos , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Elementos de Nucleótido Esparcido Largo/genética , Elementos de Nucleótido Esparcido Largo/fisiología , Ratones/embriología , Modelos Animales , Oocitos/efectos de los fármacos , Embarazo , Proteínas de Unión al ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Telómero/efectos de los fármacos , Zidovudina/efectos adversos , Zidovudina/metabolismo , Cigoto/efectos de los fármacos
9.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638655

RESUMEN

DNA G-quadruplex (G4) structures, either within gene promoter sequences or at telomeres, have been extensively investigated as potential small-molecule therapeutic targets. However, although G4s forming at the telomeric DNA have been extensively investigated as anticancer targets, few studies focus on the telomeric repeat-containing RNA (TERRA), transcribed from telomeres, as potential pharmacological targets. Here, a virtual screening approach to identify a library of drug-like putative TERRA G4 binders, in tandem with circular dichroism melting assay to study their TERRA G4-stabilizing properties, led to the identification of a new hit compound. The affinity of this compound for TERRA RNA and some DNA G4s was analyzed through several biophysical techniques and its biological activity investigated in terms of antiproliferative effect, DNA damage response (DDR) activation, and TERRA RNA expression in high vs. low TERRA-expressing human cancer cells. The selected hit showed good affinity for TERRA G4 and no binding to double-stranded DNA. In addition, biological assays showed that this compound is endowed with a preferential cytotoxic effect on high TERRA-expressing cells, where it induces a DDR at telomeres, probably by displacing TERRA from telomeres. Our studies demonstrate that the identification of TERRA G4-targeting drugs with potential pharmacological effects is achievable, shedding light on new perspectives aimed at discovering new anticancer agents targeting these G4 structures.


Asunto(s)
ARN/genética , Telómero/genética , Antineoplásicos/farmacología , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , G-Cuádruplex/efectos de los fármacos , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Relación Estructura-Actividad , Telómero/efectos de los fármacos
10.
Life Sci ; 287: 120095, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715135

RESUMEN

AIMS: This study aimed to evaluate the ability of compound 13d to induce autophagy and to promote apoptosis of tumor cells and its interaction mechanism. MATERIALS AND METHODS: Using CCK-8 assay, transwell assay, fluorescence resonance energy transfer melting analysis (FRET), transmission electron microscopy, flow cytometry assay, immunofluorescence assay, Western blot analysis, and wound healing assay. KEY FINDINGS: The results indicated that compound 13d could induce autophagy and apoptosis of gastric cancer cells. Moreover, the findings of CCK-8 assay, colony formation, migration and invasion assay, and wound healing assay revealed that compound 13d would effectively inhibit cell proliferation, migration, and invasion. Its IC50 value is about 2.4 µM against gastric cancer cells, which is similar to positive drug­platinum. 13d specific induction of telomere G-quadruplex formation was proved in extracellular FRET melting assay, and indirectly affected telomerase activity. G-quadruplex formation promoted cell apoptosis and autophagy. Upon incorporating the autophagy inhibitors 3-MA and HCQ, the expression of the autophagy marker protein LC3 was then checked, suggesting that the compound 13d influences the autophagy flux. Furthermore, knocking down the autophagy-related gene Atg5 to reduce the level of autophagy enhances the anti-tumor activity and increases apoptotic cells' proportion. Mechanistic experiments have shown that blocking the Akt/m-TOR signal pathway plays a crucial role in autophagy and G-quadruplex induced telomere dysfunction. DNA damage is the leading cause of autophagy. Compound 13d combined with autophagy inhibitor can inhibit tumor cells more effectively. SIGNIFICANCE: Our findings demonstrate that compound 13d as a telomeric G-quadruplex ligand induces Telomere dysfunction, DNA damage response, autophagy, and apoptosis in gastric cancer cells by blocking the Akt/m-TOR signaling pathway.


Asunto(s)
Autofagia/efectos de los fármacos , Citoprotección/efectos de los fármacos , G-Cuádruplex/efectos de los fármacos , Fenantrolinas/administración & dosificación , Neoplasias Gástricas , Telómero/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Quelantes/administración & dosificación , Citoprotección/fisiología , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos/métodos , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Telómero/metabolismo
11.
Biomolecules ; 11(8)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439779

RESUMEN

Telomere maintenance plays important roles in genome stability and cell proliferation. Tumor cells acquire replicative immortality by activating a telomere-maintenance mechanism (TMM), either telomerase, a reverse transcriptase, or the alternative lengthening of telomeres (ALT) mechanism. Recent advances in the genetic and molecular characterization of TMM revealed that telomerase activation and ALT define distinct neuroblastoma (NB) subgroups with adverse outcomes, and represent promising therapeutic targets in high-risk neuroblastoma (HRNB), an aggressive childhood solid tumor that accounts for 15% of all pediatric-cancer deaths. Patients with HRNB frequently present with widely metastatic disease, with tumors harboring recurrent genetic aberrations (MYCN amplification, TERT rearrangements, and ATRX mutations), which are mutually exclusive and capable of promoting TMM. This review provides recent insights into our understanding of TMM in NB tumors, and highlights emerging therapeutic strategies as potential treatments for telomerase- and ALT-positive tumors.


Asunto(s)
Genoma Humano , Proteína Proto-Oncogénica N-Myc/genética , Neoplasias del Sistema Nervioso/genética , Neuroblastoma/genética , Telomerasa/genética , Telómero/química , Proteína Nuclear Ligada al Cromosoma X/genética , Antineoplásicos/uso terapéutico , Niño , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Mutación , Proteína Proto-Oncogénica N-Myc/metabolismo , Metástasis de la Neoplasia , Neoplasias del Sistema Nervioso/tratamiento farmacológico , Neoplasias del Sistema Nervioso/mortalidad , Neoplasias del Sistema Nervioso/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/mortalidad , Neuroblastoma/patología , Factores de Riesgo , Transducción de Señal , Análisis de Supervivencia , Telomerasa/metabolismo , Telómero/efectos de los fármacos , Telómero/patología , Homeostasis del Telómero , Proteína Nuclear Ligada al Cromosoma X/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-34454691

RESUMEN

BACKGROUND: 5-aza-2'-deoxycytidine (5azadC, decitabine) is a DNA hypomethylating agent used in the treatment of myelodysplastic syndromes. Due to cytotoxic side effects dose optimization is essential. The aim of this study was to define and quantify the effects of 5azadC on biomarkers of chromosomal stability, and telomere length, in human lymphoblastoid cell line, WIL2-NS, at clinically relevant dosages. METHODS: Human WIL2-NS cells were maintained in complete medium containing 0, 0.2 or 1.0 µM 5azadC for four days, and analysed daily for telomere length (flow cytometry), chromosomal stability (cytokinesis-block micronucleus cytome (CBMN-cyt) assay), and global methylation (%5me-C). RESULTS: DNA methylation decreased significantly in 1.0 µM 5azadC, relative to control (p < 0.0001). Exposure to 1.0 µM 5azadC resulted in 1.7-fold increase in telomere length (p < 0.0001), in parallel with rapid increase in biomarkers of DNA damage; (micronuclei (MN, 6-fold increase), nucleoplasmic bridges (NPB, a 12-fold increase), and nuclear buds (NBud, a 13-fold increase) (all p < 0.0001). Fused nuclei (FUS), indicative of mitotic dysfunction, showed a 5- and 13-fold increase in the 0.2 µM and 1.0 µM conditions, respectively (p = 0.001) after 4 days. CONCLUSIONS: These data show that (i) clinically relevant concentrations of 5azadC are highly genotoxic; (ii) hypomethylation was associated with increased TL and DNA damage; and (iii) longer TL was associated with chromosomal instability. These findings suggest that lower doses of 5azdC may be effective as a hypomethylating agent, while potentially reducing DNA damage and risk for secondary disease.


Asunto(s)
Daño del ADN/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Decitabina/farmacología , Telómero/efectos de los fármacos , Biomarcadores/metabolismo , Línea Celular , Inestabilidad Cromosómica/efectos de los fármacos , Citocinesis/efectos de los fármacos , Humanos , Linfocitos/efectos de los fármacos , Pruebas de Micronúcleos/métodos , Mitosis/efectos de los fármacos
13.
Artículo en Inglés | MEDLINE | ID: mdl-34454696

RESUMEN

Telomere instability is one of the main sources of genome instability and may result from chromosome end loss (due to chromosome breakage at one or both ends) or, more frequently, telomere dysfunction. Dysfunctional telomeres arise when they lose their end-capping function or become critically short, which causes chromosomal termini to behave like a DNA double-strand break. Telomere instability may occur at the chromosomal or at the molecular level, giving rise, respectively, to telomere-related chromosomal aberrations or the loss or modification of any of the components of the telomere (telomere DNA, telomere-associated proteins, or telomere RNA). Since telomeres play a fundamental role in maintaining genome stability, the study of telomere instability in cells exposed to mutagens is of great importance to understand the telomere-driven genomic instability present in those cells. In the present review, we will focus on the current knowledge about telomere instability induced by physical, chemical, and biological mutagens in human cells.


Asunto(s)
Inestabilidad Cromosómica/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Mutágenos/toxicidad , Telómero/efectos de los fármacos , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Inestabilidad Cromosómica/genética , ADN/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Inestabilidad Genómica/genética , Humanos , Telómero/genética
14.
STAR Protoc ; 2(3): 100620, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34195674

RESUMEN

Telomere dysfunction-induced focus (TIF) assay allows efficient profiling of telomere dysfunctions in cells and tissues. Here, we describe the use of the TIF assay to screen synthetic peptides from E3 ubiquitin ligase FBW7, a tumor suppressor gene product, to prevent TIFs caused by environmental radiation stress. We demonstrate peptidomimetic telomere dysfunction inhibitor as a potentially intervening therapeutic drug candidate in aging-related diseases. This work demonstrates a novel utility of the TIF assay protocol in identifying telomere dysfunction inhibitors. For complete details on the use and execution of this protocol, please refer to Wang et al (2020).


Asunto(s)
Peptidomiméticos , Telómero/efectos de los fármacos , Células Cultivadas , Humanos
15.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199659

RESUMEN

Herein we describe a combined experimental and in silico study of the interaction of a series of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives (PBTs) with parallel G-quadruplex (GQ) DNA aimed at correlating their previously reported anticancer activities and the stabilizing effects observed by us on c-myc oncogene promoter GQ structure. Circular dichroism (CD) melting experiments were performed to characterize the effect of the studied PBTs on the GQ thermal stability. CD measurements indicate that two out of the eight compounds under investigation induced a slight stabilizing effect (2-4 °C) on GQ depending on the nature and position of the substituents. Molecular docking results allowed us to verify the modes of interaction of the ligands with the GQ and estimate the binding affinities. The highest binding affinity was observed for ligands with the experimental melting temperatures (Tms). However, both stabilizing and destabilizing ligands showed similar scores, whilst Molecular Dynamics (MD) simulations, performed across a wide range of temperatures on the GQ in water solution, either unliganded or complexed with two model PBT ligands with the opposite effect on the Tms, consistently confirmed their stabilizing or destabilizing ability ascertained by CD. Clues about a relation between the reported anticancer activity of some PBTs and their ability to stabilize the GQ structure of c-myc emerged from our study. Furthermore, Molecular Dynamics simulations at high temperatures are herein proposed for the first time as a means to verify the stabilizing or destabilizing effect of ligands on the GQ, also disclosing predictive potential in GQ-targeting drug discovery.


Asunto(s)
ADN/efectos de los fármacos , G-Cuádruplex/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/química , Telómero/química , Sitios de Unión/efectos de los fármacos , Dicroismo Circular , Simulación por Computador , ADN/química , ADN/ultraestructura , Humanos , Ligandos , Simulación de Dinámica Molecular , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/ultraestructura , Telómero/efectos de los fármacos , Telómero/genética
16.
Environ Health ; 20(1): 76, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193151

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) and polybrominated diphenyl ethers (PBDEs) are endocrine disrupting chemicals with widespread exposures across the U.S. given their abundance in consumer products. PFAS and PBDEs are associated with reproductive toxicity and adverse health outcomes, including certain cancers. PFAS and PBDEs may affect health through alternations in telomere length. In this study, we examined joint associations between prenatal exposure to PFAS, PBDEs, and maternal and newborn telomere length using mixture analyses, to characterize effects of cumulative environmental chemical exposures. METHODS: Study participants were enrolled in the Chemicals in Our Bodies (CIOB) study, a demographically diverse cohort of pregnant people and children in San Francisco, CA. Seven PFAS (ng/mL) and four PBDEs (ng/g lipid) were measured in second trimester maternal serum samples. Telomere length (T/S ratio) was measured in delivery cord blood of 292 newborns and 110 second trimester maternal whole blood samples. Quantile g-computation was used to assess the joint associations between groups of PFAS and PBDEs and newborn and maternal telomere length. Groups considered were: (1) all PFAS and PBDEs combined, (2) PFAS, and (3) PBDEs. Maternal and newborn telomere length were modeled as separate outcomes. RESULTS: T/S ratios in newborn cord and maternal whole blood were moderately correlated (Spearman ρ = 0.31). In mixtures analyses, a simultaneous one quartile increase in all PFAS and PBDEs was associated with a small increase in newborn (mean change per quartile increase = 0.03, 95% confidence interval [CI] = -0.03, 0.08) and maternal telomere length (mean change per quartile increase = 0.03 (95% CI = -0.03, 0.09). When restricted to maternal-fetal paired samples (N = 76), increasing all PFAS and PBDEs combined was associated with a strong, positive increase in newborn telomere length (mean change per quartile increase = 0.16, 95% CI = 0.03, 0.28). These associations were primarily driven by PFAS (mean change per quartile increase = 0.11 [95% CI = 0.01, 0.22]). No associations were observed with maternal telomere length among paired samples. CONCLUSIONS: Our findings suggest that PFAS and PBDEs may be positively associated with newborn telomere length.


Asunto(s)
Contaminantes Ambientales/toxicidad , Retardadores de Llama/toxicidad , Fluorocarburos/toxicidad , Éteres Difenilos Halogenados/toxicidad , Efectos Tardíos de la Exposición Prenatal , Telómero/efectos de los fármacos , Adulto , Monitoreo Biológico , Contaminantes Ambientales/análisis , Ácidos Grasos/análisis , Ácidos Grasos/toxicidad , Femenino , Retardadores de Llama/análisis , Fluorocarburos/análisis , Éteres Difenilos Halogenados/análisis , Humanos , Recién Nacido , Masculino , Exposición Materna , Intercambio Materno-Fetal , Embarazo , Ácidos Sulfónicos/análisis , Ácidos Sulfónicos/toxicidad
17.
Cell Prolif ; 54(9): e13101, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34296479

RESUMEN

OBJECTIVE: Osteosarcoma (OS) is characterized by high levels of the tumour-associated inflammatory microenvironment. Moreover, in approximately 60% of OS, telomere length is maintained by alternative lengthening of telomeres (ALT) pathway. Whether the ALT pathway can be exploited for OS therapeutic treatment and how the OS inflammatory microenvironment influences the anti-cancer drug effect remains unknown. Here, we examined the biological effects of TMPyP4 and cisplatin in the inflammatory microenvironment of OS cells. MATERIALS AND METHODS: Immunofluorescence in situ hybridization (IF-FISH) and C-circle experiments were used to detect the G-quadruplex and ALT activity. The redox potential of single guanine, G-quadruplex and G-quadruplex/TMPyP4 was evaluated by the lowest unoccupied molecular orbital energy (LUMO), zeta potential and cyclic voltammetry. Cell viability, flow cytometry and apoptosis, Western blot, comet assay, adhesion, transwell and scratch experiments were performed to compare the anti-tumour proliferation and migration effects of TMPyP4 and cisplatin in the inflammatory microenvironment. RESULTS: This study indicated that compared with cisplatin, TMPyP4 could induce the formation of human telomeres and FAK G-quadruplex in vitro and in vivo, and TMPyP4-treated OS cells showed fewer extrachromosomal C-circles and fewer ALT-associated promyelocytic leukaemia bodies. Consequently, the ALT activity and FAK-related cell migration were suppressed by TMPyP4. Mechanistically, the formation of G-quadruplex resulted in both lower redox potential than G within the genome and FAK transcription inhibition, and TMPyP4 could enhance this phenomenon, especially in the inflammatory microenvironment. CONCLUSIONS: Our results reveal that TMPyP4 is more suitable for OS treatment than cisplatin.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , G-Cuádruplex/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Porfirinas/farmacología , Microambiente Tumoral/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Osteosarcoma/metabolismo , Telomerasa/metabolismo , Telómero/efectos de los fármacos
18.
Nutrients ; 13(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072630

RESUMEN

There is limited evidence regarding the potential risk of untargeted iron supplementation, especially among individuals who are iron-replete or have genetic hemoglobinopathies. Excess iron exposure can increase the production of reactive oxygen species, which can lead to cellular damage. We evaluated the effect of daily oral supplementation on relative leukocyte telomere length (rLTL) and blood mitochondrial DNA (mtDNA) content in non-pregnant Cambodian women (18-45 years) who received 60 mg of elemental iron as ferrous sulfate (n = 190) or a placebo (n = 186) for 12 weeks. Buffy coat rLTL and mtDNA content were quantified by monochrome multiplex quantitative polymerase chain reaction. Generalized linear mixed-effects models were used to predict the absolute and percent change in rLTL and mtDNA content after 12 weeks. Iron supplementation was not associated with an absolute or percent change in rLTL after 12 weeks compared with placebo (ß-coefficient: -0.04 [95% CI: -0.16, 0.08]; p = 0.50 and ß-coefficient: -0.96 [95% CI: -2.69, 0.77]; p = 0.28, respectively). However, iron supplementation was associated with a smaller absolute and percent increase in mtDNA content after 12 weeks compared with placebo (ß-coefficient: -11 [95% CI: -20, -2]; p = 0.02 and ß-coefficient: -11 [95% CI: -20, -1]; p= 0.02, respectively). Thus, daily oral iron supplementation for 12 weeks was associated with altered mitochondrial homeostasis in our study sample. More research is needed to understand the risk of iron exposure and the biological consequences of altered mitochondrial homeostasis in order to inform the safety of the current global supplementation policy.


Asunto(s)
ADN Mitocondrial , Suplementos Dietéticos , Hierro , Leucocitos/efectos de los fármacos , Telómero/efectos de los fármacos , Adulto , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Cambodia , ADN Mitocondrial/sangre , ADN Mitocondrial/efectos de los fármacos , Femenino , Humanos , Hierro/administración & dosificación , Hierro/farmacología , Estrés Oxidativo/efectos de los fármacos , Adulto Joven
19.
Metallomics ; 13(6)2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34021581

RESUMEN

Pt-ttpy (tolyl terpyridin-Pt complex) covalently binds to G-quadruplex (G4) structures in vitro and to telomeres in cellulo via its Pt moiety. Here, we identified its targets in the human genome, in comparison to Pt-tpy, its derivative without G4 affinity, and cisplatin. Pt-ttpy, but not Pt-tpy, induces the release of the shelterin protein TRF2 from telomeres concomitantly to the formation of DNA damage foci at telomeres but also at other chromosomal locations. γ-H2AX chromatin immunoprecipitation (ChIP-seq) after treatment with Pt-ttpy or cisplatin revealed accumulation in G- and A-rich tandemly repeated sequences, but not particularly in potential G4 forming sequences. Collectively, Pt-ttpy presents dual targeting efficiency on DNA, by inducing telomere dysfunction and genomic DNA damage at specific loci.


Asunto(s)
Cisplatino/farmacología , Daño del ADN , G-Cuádruplex , Compuestos Organoplatinos/farmacología , Neoplasias Ováricas/patología , Telómero/efectos de los fármacos , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Femenino , Humanos , Compuestos Organoplatinos/química , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Células Tumorales Cultivadas
20.
Aging Cell ; 20(5): e13352, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33942458

RESUMEN

Asthma is a chronic inflammatory disease affecting 300 million people worldwide. As telomere shortening is a well-established hallmark of aging and that asthma incidence decreases with age, here we aimed to study the role of short telomeres in asthma pathobiology. To this end, wild-type and telomerase-deficient mice with short telomeres (third-generation (G3 Tert-/- mice)) were challenged with intranasal house dust mite (HDM) extract. We also challenged with HDM wild-type mice in which we induced a telomere dysfunction by the administration of 6-thio-2´-deoxyguanosine (6-thio-dG). Following HDM exposure, G3 Tert-/- and 6-thio-dG treated mice exhibited attenuated eosinophil counts and presence of hematopoietic stem cells in the bone marrow, as well as lower levels of IgE and circulating eosinophils. Accordingly, both G3 Tert-/- and 6-thio-dG treated wild-type mice displayed reduced airway hyperresponsiveness (AHR), as indicated by decreased airway remodeling and allergic airway inflammation markers in the lung. Furthermore, G3 Tert-/- and 6-thio-dG treated mice showed lower differentiation of Club cells, attenuating goblet cell hyperplasia. Club cells of G3 Tert-/- and 6-thio-dG treated mice displayed increased DNA damage and senescence and reduced proliferation. Thus, short/dysfunctional telomeres play a protective role in murine asthma by impeding both AHR and mucus secretion after HDM exposure. Therefore, our findings imply that telomeres play a relevant role in allergen-induced airway inflammation.


Asunto(s)
Asma/genética , Acortamiento del Telómero , Alérgenos/inmunología , Animales , Asma/inmunología , Asma/patología , Diferenciación Celular/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/farmacología , Células Caliciformes/efectos de los fármacos , Células Caliciformes/patología , Hiperplasia , Pulmón/patología , Ratones , Pyroglyphidae/inmunología , Telomerasa/genética , Telómero/efectos de los fármacos , Tionucleósidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...